•	(a)	a solenoid by electromagnetic induction. Sketch and label the arrangement of apparatus you would use.
		[3]

(b) Fig. 8.1 represents a transformer with primary coil P and secondary coil S, wound on an iron core.

There is an alternating current in coil P.

Fig. 8.1

(i)	State what happens in the iron core as a result of the alternating current in P.
	[2]
(ii)	Tick the box next to the correct description of the current in S.
	higher frequency a.c.
	same frequency a.c.
	lower frequency a.c.
	rectified d.c.
	constant d.c. [1]
(iii)	Coil P has 50 turns of wire, an applied voltage of 12V, and a current of 0.50 A. Coil S has 200 turns.
	Calculate the current in S. Assume the transformer is 100% efficient.
	current =[3]
	[Total: 9]

sec	onda	ry coil is connected to long-distance transmission cables.
(a)	The	output voltage of the transformer is greater than the input voltage.
	Exp	plain how a transformer produces this output voltage.
		[4]
(b)	The	ere are energy losses in the transmission cables.
	(i)	Explain why the energy losses become greater when the length of the transmission cables is greater.
		[2]
	(ii)	Discuss the advantages and disadvantages of using transmission cables of greater cross-sectional area.
		[2]
		[Total: 8]

The a.c. supply from a power station is connected to the primary coil of a transformer. The

2

3 (a) Fig. 10.1 shows a wire PQ placed between the poles of a magnet. There is a current in wire PQ.

Fig. 10.1

- (i) On Fig. 10.1, sketch lines with arrows to show the direction of the magnetic field between the poles of the magnet. [1]
- (ii) The force on PQ is into the paper.

Draw an arrow on PQ to show the direction of the current. [1]

- (b) The wire PQ in Fig. 10.1 is replaced by a narrow beam of β -particles travelling from left to right.
 - (i) Suggest a suitable detector for the β -particles.

[1]

(ii) State the direction of the force on the $\beta\mbox{-particles}.$

Г4	17	
 ĮΙ	ij	

(iii) Describe the path of the $\beta\mbox{-particles}$ in the space between the poles of the magnet.

 	• • • • • • • • • • • • • • • • • • • •	

.....

(iv) State what happens to the air molecules along the path of the β-particles.

.....[1]

[Total: 6]

4 A simple motor is made in a school laboratory. A coil of wire is mounted on an axle between the poles of a horseshoe magnet, as illustrated in Fig. 9.1.

Fig. 9.1

- (a) At the instant illustrated in Fig. 9.1, the coil ABCD is horizontal and the battery is connected as shown.
 - (i) For this position, state the direction of the force on AB and the direction of the motion of AB.

direction of motion of AB[1]

(ii) Explain why BC does not contribute to the turning force on the coil.

______[1]

D)	the ends of the coil.
	Describe and explain what happens to the coil.
	[2]
(c)	The motor in Fig. 9.1 does not rotate very quickly. The designer of a commercial motor is required to produce a faster-rotating motor.
	Suggest one change that could be made to increase the speed of the motor.
	[1]
	[Total: 5]

5 (a) Fig. 9.1 shows a wire, held between the poles of a magnet, carrying a current in the direction of the arrow.

Fig. 9.1

(i) On Fig. 9.1, draw an arrow, labelled F, to show the direction of the force acting on the wire. [1]
(ii) Explain why the force F acts on the wire. [1]
(iii) The directions of the current and the magnetic field are both reversed. State the effect on the force F.

(b) Fig. 9.2 shows a negatively charged particle travelling, in a vacuum, into a region where a magnetic field acts. The magnetic field, shown by the crosses, is acting **into** the paper.

Fig. 9.2

- (i) Draw an arrow, labelled *F*, to show the direction of the force on the particle at point P where it enters the field.
- (ii) Describe the path of the particle as it continues to move through the magnetic field.

[2]

[Total: 5]

6 (a) In Fig. 8.1, a magnet is moving towards one end of a solenoid connected to a sensitive centrezero meter. During this movement a current is induced in the solenoid.

Fig. 8.1

Suggest **three** possible changes to the system in Fig. 8.1 that would increase the induced current.

- 1.

 2.

 3.
 [3]
- **(b)** Fig. 8.2 shows a transformer. P is the primary coil. S is the secondary coil. The coils are wound on an iron core.

Fig. 8.2

P has 200 turns and S has 800 turns. The e.m.f. induced across S is 24V. The current in S is 0.50 A. The transformer operates with 100% efficiency.

Ca	lculate	
(i)	the voltage of the supply to P,	
(ii)	the current in P.	voltage =[2]
		current =[2]

[Total: 7]

7 Fig. 8.1 shows a simple motor with a rectangular coil that is free to rotate about an axis A₁A₂. The coil is connected to a battery by brushes B₁ and B₂.

Fig. 8.1

- (a) Brush B₁ is connected to the positive terminal of the battery and brush B₂ is connected to the negative terminal of the battery.
 - (i) On Fig. 8.1, use an arrow to show the direction of the conventional current in the coil. [1]
 - (ii) State the direction in which the coil rotates, when viewed from the end closest to the brushes.
 - [1]

(b)) State what difference, if any, each of the following changes makes to the rotation of the coil:		
	(i)	using a battery with a larger potential difference,	
	(ii)	using a coil with several turns of wire carrying the same current as in (a),	
	(iii)	using a stronger magnetic field.	
		[3]	
to suggest why the current from the battery falls as the motor speeds up.		e structure of the motor is very similar to that of an a.c. generator. Use ideas about induction suggest why the current from the battery falls as the motor speeds up.	
		[1]	
		[Total: 6]	